• UK +44(0)1782 764428
  • US 919-504-4900

You are here: Home » Healthcare » Insight Hub » White Papers

White Papers

  • Cleaning and Sterilization Validation of Reusable Medical Devices

    Nosocomial infections (hospital acquired infections) are a major threat to patient safety and are often preventable. One significant source of such infections are contaminated medical devices used during surgeries and other clinical procedures. In an attempt to minimize this particular source of infection, regulatory authorities require medical device manufacturers to ensure that the recommended cleaning and sterilization procedures used in the reprocessing of such devices are fully validated and shown to be effective.

  • Understanding Materials Choices, their Performance and Selection

    This paper sets out to affirm the value of material characterisation in product and process development activities in technology based industries, whilst sustaining the quality of manufacturing output.  A selection of techniques, applications and case studies, relevant to a wide range of industry sectors is covered.

  • Chemical Imaging of Industrial and Healthcare Materials by ToFSIMS

    Chemical imaging is a powerful tool that can be applied to a wide variety of applications. Time-of-Flight Secondary Ion Mass Spectrometry (ToFSIMS) is an advanced technique that provides information about the chemistry of the surface of samples and allows analysts to also spatially map the chemistry of the surface. To obtain a more in-depth profile of analytes, ToFSIMS is often used in conjunction with other surface analysis techniques but, as a standalone technique, it still offers valuable insight into the surfaces of materials. This white paper will discuss the power of ToFSIMS across a range of different industries and materials and the specific information and value provided.

  • Your Metal Component has Failed in Fatigue: What do you do next?

    Fatigue is a major failure mode for metal components, in commercial, industrial and research environments, and can have catastrophic consequences. Understanding the mechanisms behind fatigue failures, and knowing how to handle samples after they have failed in fatigue, is essential for engineers to perform effective analysis.

  • Single Use Systems in the Pharmaceutical Industry - Advantages and Considerations

    SUS can make it easier for pharmaceutical manufacturers in terms of process operation and minimizing risk of contamination. Downtime can also be greatly reduced as SUS components are delivered ready for use, and are designed so that one component can quickly be interchanged with another, clean replacement, between runs or when changing to a different product on the same line.
    SUS do however still pose challenges themselves, which need careful planning and consideration to maximize the benefit from them whilst ensuring patient safety and product integrity.
    In this paper we will discuss some of the testing and validation considerations that pharmaceutical manufacturers should look at when implementing SUS, as well as other factors that can help them to optimize their usage.

  • Failure Analysis of Plastic Products

    The extensive application of polymer materials nowadays is inevitably accompanied by the occurrence of product failure, which is costly for all organizations involved. The consequence of failure varies from loss of asset and brand credibility, to costly legal disputes, and catastrophic human casualties. This paper provides some insights into the failure of plastic products and gives an introduction to some of the analytical techniques commonly used in failure diagnosis. An understanding of the background knowledge of plastic materials and the methods generally adopted when conducting a failure analysis will help to not only investigate a failure, but can also determine the right corrective solutions.

  • Design Optimization in Medical Devices: Materials Matter

    The development of revolutionary products, the meeting of legislative requirements or the replacement of raw materials phased out by third party suppliers are just some of the critical reasons that device engineers may seek new or alternative materials. The unique and immeasurably diverse range of materials available for medical devices offers many possibilities for design and function. In this white paper, we demonstrate the risk of working with the wrong material, highlight the upside when the right material is selected, and outline what the selection process looks like. In addition to material selection, we also look at material processing and discuss how understanding how the two are unified in the actual design and function of the process is the ultimate key to success.

  • Additive Manufacturing - A Metallurgical Perspective

    Additive manufacturing (AM), also known as additive layer manufacturing (ALM) or 3D printing (3DP), is a manufacturing method with significant potential but a number of issues. It has been earmarked as the next industrial revolution and has already found some specific industry applications. AM involves three dimensional structures being built up one layer at a time. Each layer is melted to fuse powder particles together before the next layer is applied. This is repeated to continuously build a three dimensional product.

  • Hip and Knee Wear Testing - What the Standards Don't Tell You

    The current ISO standards for both hip (ISO 14242) and knee (ISO 14243) wear simulation provide well-defined loading and displacement conditions for anatomical joint loading and motion during typical gait. However, a few areas in the ISO standards lack additional information which makes it a challenge to design and implement a comprehensive pre-clinical wear testing program. Researchers in the wear testing field have suggestions regarding ambiguous directions in the ISO standard. The following information offers additional guidance that could help support implant manufacturers in their decision-making and justifications for regulatory submissions.

  • Low Temperature Routes to Inorganic Powders and Structures

    In this paper we will discuss the sol-gel process for making ceramics and glasses. We will describe the main differences between sol-gel and traditional methods for making these types of materials and the advantages to be gained through utilizing the sol-gel method. The primary benefit of using a sol-gel method is that it enables the synthesis of inorganic materials at relatively low temperatures, in contrast to more traditional methods of making ceramic and glass products. This in turn offers advantages that are being exploited to develop innovative and applied technologies in a wide variety of industrial sectors. This white paper will focus primarily on the applications for new Healthcare materials technologies.

1 2 3 Next